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Abstract
Evidence is presented that properties of objects, or events,
or man-made artifacts in the natural world are clustered in
a multidimensional space. Hence observations made by
different sense modalities can be highly correlated. Such
clustering favors perceptual inference, increasing its
robustness, as well as supporting generalizations.

The Claim
When we, or intelligent agents in general, interact with
objects or other creatures, our choices for actions are
typically based on the perception and recognition of the
current state of the world. This is an inferential process,
involving the analysis of very limited sense data. Why,
then, are our percepts so reliable and successful?

A Darwinian explanation would be that creatures who are
successful in their environments have evolved powerful
inferential machinery through natural selection. However,
another explanation, compatible with Darwinian evolution,
is that objects, events, behaviors  -- even cognitive models
and social conventions – appear in clusters in a multidimen-
sional “property” space. In other words, given one inferred
property (i.e. based on observations of one sensor modality),
there is a high probability of inferring several other properties
though other sense modalities. Such clusters of correlated
properties are called “Natural Modes” (Richards & Bobick,
1988.) If a world hosts such modal clusters, then these
should be the focus for understanding successful survival.

Definition:  A Natural Mode is a cluster of lawful regularities,
where the observation of one regularity is highly predictive of
a set of other regularities. (See Jepson & Richards (1993) for
a more formal statement.)

As will be seen shortly, the lawful aspect of modal properties
is important, because one can then generalize from one to
other objects  within a modal cluster.

Simple Example
If the modal inference hypothesis holds, then Nature’s
generative processes must lead to correlated properties,
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which then can be inferred using quite different modes of
observation.  Consider viewing and grasping a metal
object. The visual observations include Lambertian and
distinctive specular components; the shape appears solid
(rather than undergoing fluid distortion); when grasped,
the surface is very hard and often smooth; it may also feel
cool; if hit with a hard stick or knuckle, there is a
characteristic metallic sound due to internal friction
(Richards & Wildes, 1988.) A cotton ball would have a
quite different set of observations; a puddle of water
another. Recently, Michael Coen  (AAAI 05) has used the
modal correlates of speech (sound and lip movements) to
categorize the vowels using a self-supervised Hebbian
learning algorithm. Such bootstrapping of information
across modalities can be achieved only if the underlying
generative processes are correlated. Regardless of
whether or not we understand the essence of these
generative processes, powerful and reliable inference can
be achieved by observations of different modalities that
are independent.  More, however, can be inferred if the
properties observed obey allometric rules.

Fig. 1. Example of an allometric relation (McMahon, 1973)

Allometry
Allometry is the generalization of simple power laws that
describe different rates of growth or form for parts of a
body relative to the body as a whole (Thompson, 1917;



Huxley 1932.) In Fig. 1 is one example. Shown are the
relation between for chest size and body weight (upper
curve) as well as the diameter to length ratio of limbs
needed to support body weight. The intuition is that
thicker legs are needed to support large masses. A similar
relation applies to other structures, such as trees.
Seedlings have very slender trunks relative to the size of
the arborized body, whereas Sequoias have relatively
thick trunks.

Fig. 2 presents another example. Here leg length is related
to stride frequency. To first order, the relation is
approximated by an inverted pendulum, such as a wooden
toddler might use.

Fig. 2. leg length vs stride frequency ( Richards & Bobick, 1988)

To create a mode, we link several such allometric
relations, as shown in Fig. 3 below. Here, each graph
depicts a (power law) relation of a body part to leg length
for a large class of terrestrial animals.  Body and “hand”
size increase with leg length (upper left); animals with

Fig. 3.Schematic of size lawful relations to leg length (adapted from
McMahon, 1973, 1975.)

long legs “lumber”; those with shorter legs “scamper
(lower left.) If body size increases, so will the vocal tract
length with a decrease in the pitch of emitted sounds. As
shown by the dashed lines, given one type of observation

in the context, several other properties may be inferred. In
this example, the observation modes include visual shape
and aspect, rate of movement, and speech and footfall
sounds.

                    Modal Evolution
T. H. Huxley (Maynard-Smith et al, 1985) once
commented that “there appears to be” predetermined lines
of modification that lead natural selection to “produce
varieties of a limited number and kind” for each species.
Modal regularities in designs would support this
conjecture. Especially significant is when creatures, such
as Man, have the knowledge and capability of modifying
and reforming their environments, passing this knowledge
on to successive generations. Language and culture then
become significant forces in evolutionary development
(Waddington, 1959; Cavalli-Sforza, L and Feldman. M.,
1981) The invention of hand tools (which also can be
shown to have occurred in steps of punctuated modal
evolution – see Fig 4), enabled humans to create many
useful artifacts that have modal properties (e.g. dwellings,
writing implements, means of transportation, social
conventions….)

Fig. 4.Early tool development showing the variation and increase in
differentiation over time. The two dimensions for each step represent
two different measurements. The four steps show different times, as
indicated, The lower right shows tool measurements for a modern
Australian aboriginal tribe. (From  G. L. Isaac, 1976.)

Fig. 5 offers a sketch of the development of some
important artifacts that have led to a branching hierarchy
of sub-modes. (Their root is in the modal structure of the
human being.) The graphical form resembles proposals
for the evolution of language. Which might also be
considered a modal endeavor.



Elsewhere, we have shown how the basic structure of
modal relations can support reliable perceptual
inference and categorization (Bobick , 1986; Richards,
Jepson and Feldman, 1992; Feldman, 1997).

               

Fig 5. Hierarchical sub-mode evolution derived from Human modal
structure

An intriguing question is to what degree the space of our
models for physical and social phenomena also have a
modal character – at least at our own space-time scale.
The answer may clarify Wigner’s commentary about why
our theories of Natural phenomena are typically so
successful.
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